-
1
D. Aldous:
On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing,
Probability in the Engineering and Informational Science, pp. 33–45, 1987.
-
2
S. Asmussen and P.W. Glynn:
Stochastic Simulation, Algorithms and Analysis,
Springer, 2007.
-
3
S. Asmussen:
Ruin Probabilities, World Scientific, 2000, 2001.
-
4
P. Bremaud:
Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues,
Springer Verlag, 1999.
-
5
P. Diaconis, D. Strook (1991): Geometric bounds for eigenvalues of Markov chains, Annals of Applied Probability 1 (1), 36–61.
-
6
S. Geman and D. Geman (1984):
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE-PAMI, 6, 721–741.
-
7
C.J. Geyer (1992):
Practical Markov Chain Monte Carlo. Statistical Science 7 (4),
473–511.
-
8
C.J. Geyer (1995, 2005): Markov chain Monte Carlo Lecture Notes.
Dostępne na www.stat.umn.edu/geyer.
-
9
C.J. Geyer, E.A. Thompson (1992). Constrained Monte Carlo maximum
likelihood for dependent data. J. R. Statististical Society B, 54, 3, 657–699.
-
10
W.K. Hastings (1970): Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57, 97–109.
-
11
M. Jerrum, A. Sinclair (1996): The Markov chain Monte Carlo method: an approach to approximate counting and integration,
In Approximation Algorithms for NP-hard Problems, (Dorit Hochbaum, ed.), PWS, 1996.
-
12
: M. Jerrum (1998): Mathematical foundations of the Markov chain Monte Carlo method, In
Probabilistic Methods for Algorithmic Discrete Mathematics, Springer 1998.
-
13
G. Jones (2004): On the Markov chain Central Limit Theorem,
Probability Surveys 1, 299–320.
-
14
F.K.C. Kingman: Procesy Poissona, PWN 2002.
-
15
J.S. Liu: Monte Carlo Strategies in Scientific Computing, Springer 2004.
-
16
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller (1953):
Equation of state calculation by fast computing machines,
Journal of Chemical Physics, 21 (6), 1087–1092.
-
17
E. Nummelin (2002): MC's for MCMC'ists. International Statistical Review, 70, 215–240.
-
18
B.D. Ripley: Stochastic Simulation, Wiley & Sons, 1987.
-
19
C.P. Robert, G. Casella: Monte Carlo Statistical Methods, Springer 2004.
-
20
G.O. Roberts, J.S. Rosenthal (2004): General state space Markov chains and MCMC algorithms.
Probability Surveys 1, 20–71.
-
21
J.S. Rosenthal (1995): Rates of convergence for Gibbs sampling for variance component models,
Annals of Statistics 23, 740–761.
-
22
M. Rybiński:
Krótkie wprowadzenie do R
dla programistów, z elementami statystyki opisowej,
WMIM UW 2009.
-
23
R. Zieliński, R. Wieczorkowski: Komputerowe generatory liczb losowych, WNT, Warszawa,
1997.